Skip to main content

Check the injectivity and surjectivity of the following functions: (i) f : N → N given by f(x) = x^2 (ii) f : Z → Z given by f(x) = x^2 (iii) f : R → R given by f(x) = x^2 (iv) f : N → N given by f(x) = x^3 (v) f : Z → Z given by f(x) = x^3

Class 12, NCERT Chapter 1,  Exercise 1.2, Q2

(i) fN → N is given by,
f(x) = x2It is seen that for xy ∈Nf(x) = f(y
⇒ x2 = y2 
⇒ x = y.
f is injective.
Now, 2 ∈ N. But, there does not exist any x in N such that f(x) = x2 = 2.
∴ f is not surjective.
Hence, function f is injective but not surjective.

(ii) fZ → Z is given by,
f(x) = x2It is seen that f(-1) = f(1) = 1, but -1 ≠ 1.
∴ f is not injective.
Now,-2 ∈ Z. But, there does not exist any element x ∈Z such that f(x) = x2 = -2.
∴ f is not surjective.
Hence, function f is neither injective nor surjective.

(iii) fR → R is given by,
f(x) = x2It is seen that f(-1) = f(1) = 1, but -1 ≠ 1.
∴ f is not injective.
Now,-2 ∈ R. But, there does not exist any element x ∈ R such that f(x) = x2 = -2.
∴ f is not surjective.
Hence, function f is neither injective nor surjective.

(iv) fN → N given by,
f(x) = x3It is seen that for xy ∈Nf(x) = f(y
⇒ x3 = y3 
⇒ x = y.
f is injective.
Now, 2 ∈ N. But, there does not exist any element x in domain N such that f(x) = x3 = 2.
∴ f is not surjective
Hence, function f is injective but not surjective.

(v) fZ → Z is given by,
f(x) = x3It is seen that for xy ∈ Zf(x) = f(y
⇒ x3 = y3 
⇒ x = y.
∴ f is injective.
Now, 2 ∈ Z. But, there does not exist any element x in domain Z such that f(x) = x3 = 2.
∴ f is not surjective.
Hence, function f is injective but not surjective.

Comments

Popular posts from this blog

. Let f : R → R be defined as f(x) = 3x. Choose the correct answer. (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is neither one-one nor onto.

Class 12, NCERT Chapter 1,  Exercise 1.2, Q12 f : R → R defined as  f ( x ) = 3 x . Let  x ,  y  ∈  R  such that  f ( x ) =  f ( y ). ⇒ 3 x  = 3 y ⇒  x  =  y ∴ f  is one-one. Also, for any real number ( y)  in co-domain  R , there exists  in  R  such that . ∴ f  is onto. Hence, function  f  is one-one and onto. The correct answer is A.

Let f : N → N be defined by f (n) ={ (n+1)/2, if n is odd and (n-1)/2, if n is even, for all n ∈ N.State whether the function f is bijective. Justify your answer

Class 12, NCERT Chapter 1,  Exercise 1.2, Q9 Thus it is bijective.