Skip to main content

Show that the relation R defined in the set A of all triangles as R = {(T1 , T2 ) : T1 is similar to T2 }, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, 10. Which triangles among T1 , T2 and T3 are related?



Class 12, NCERT Chapter 1,  Exercise 1.1, Q12


It is given that the relation R defined in the set A of all triangles as
R = {(T1, T2): T1 is similar to T2},
Now, R is reflexive as every triangle is similar to itself.

Now, if (T1, T2) ϵ R, then T1 is similar to T2.
 T2 is similar to T1.
 (T1, T2) ϵ R
Therefore, R is symmetric.

Now, if (T1, T2), (T2, T3) ϵ R,
 T1 is similar to T2 and T2 is similar to T3.
 T1 is similar to T3.
 (T1, T3) ϵ R
Therefore, R is transitive.
Therefore, R is an equivalence relation.





Now, we can see that,


Therefore, the corresponding sides of triangles T1 and T3 are in the same ratio.

Thus, triangle T1 is similar to triangle T3.

Therefore, T1 is related to T3.

Comments

Popular posts from this blog

Let A be the set of all 50 students of Class X in a school. Let f : A → N be function defined by f(x) = roll number of the student x. Show that f is one-one but not onto.

Class 12, NCERT Chapter 1,  Example7 No two different students in the class can have the same roll number. Therefore, f must be one-one. We can assume without any loss of generality that roll numbers of students are from 1 to 50. This implies that 51,52,53... in N is not roll number of any student of the class, so that 51,52,53...  can not be an image of any element of X under f. Hence, f is not onto.

. Let f : R → R be defined as f(x) = 3x. Choose the correct answer. (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is neither one-one nor onto.

Class 12, NCERT Chapter 1,  Exercise 1.2, Q12 f : R → R defined as  f ( x ) = 3 x . Let  x ,  y  ∈  R  such that  f ( x ) =  f ( y ). ⇒ 3 x  = 3 y ⇒  x  =  y ∴ f  is one-one. Also, for any real number ( y)  in co-domain  R , there exists  in  R  such that . ∴ f  is onto. Hence, function  f  is one-one and onto. The correct answer is A.

Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y) : x and y have same number of pages} is an equivalence relation.

Class 12, NCERT Chapter 1,  Exercise 1.1, Q7 Set  A  is the set of all books in the library of a college. Given, R = { x ,  y ):  x  and  y  have the same number of pages} Now, R is reflexive since ( x ,  x ) ∈ R as  x  and  x  has the same number of pages. Let ( x ,  y ) ∈ R  ⇒  x  and  y  have the same number of pages. ⇒  y  and  x  have the same number of pages. ⇒ ( y ,  x ) ∈ R ∴R is symmetric. Now, let ( x ,  y ) ∈R and ( y ,  z ) ∈ R. ⇒  x  and  y  and have the same number of pages and  y  and  z  have the same number of pages. ⇒  x  and  z  have the same number of pages. ⇒ ( x ,  z ) ∈ R ∴R is transitive. Hence, R is an equivalence relation.