Skip to main content

Give an example of a relation. Which is (i) Symmetric but neither reflexive nor transitive. (ii) Transitive but neither reflexive nor symmetric. (iii) Reflexive and symmetric but not transitive. (iv) Reflexive and transitive but not symmetric. (v) Symmetric and transitive but not reflexive.

Class 12, NCERT Chapter 1,  Exercise 1.1, Q10

(i) Let A = {3, 4, 5}.
Define a relation R on A as R = {(3, 4), (4, 3)}.
Relation R is not reflexive as (3, 3), (4, 4), (5, 5) ∉ R.
Now, as (3, 4) ∈ R and also (4, 3) ∈ R, R is symmetric.

⇒ (3, 4), (4, 3) ∈ R, but (3, 3) ∉ R

∴R is not transitive.
Hence, relation R is symmetric but not reflexive or transitive.

(ii) Consider a relation R in defined as:
R = {(ab): a < b}
For any ∈ R, we have (aa) ∉ R since a cannot be strictly less than a itself. In fact, a = a.
∴ R is not reflexive.
Now,
(1, 2) ∈ R (as 1 < 2)
But, 2 is not less than 1.
∴ (2, 1) ∉ R
∴ R is not symmetric.
Now, let (ab), (bc) ∈ R.
⇒ a < b and b < c
⇒ a < c
⇒ (ac) ∈ R
∴ R is transitive.
Hence, relation R is transitive but not reflexive and symmetric.

(iii) Let A = {4, 6, 8}.
Define a relation R on A as:
A = {(4, 4), (6, 6), (8, 8), (4, 6), (6, 4), (6, 8), (8, 6)}
Relation R is reflexive since for every a ∈ A, (aa) ∈R i.e., (4, 4), (6, 6), (8, 8)} ∈ R.
Relation R is symmetric since (ab) ∈ R ⇒ (ba) ∈ R for all ab ∈ R.
Relation R is not transitive since (4, 6), (6, 8) ∈ R, but (4, 8) ∉ R.
Hence, relation R is reflexive and symmetric but not transitive.

(iv) Define a relation R in R as:
R = {ab): a3 ≥ b3}
Clearly (aa) ∈ R as a3 = a3.
∴ R is reflexive.
Now,
(2, 1) ∈ R (as 23 ≥ 13)
But,
(1, 2) ∉ R (as 13 < 23)
 R is not symmetric.
Now,
Let (ab), (bc) ∈ R.
⇒ a3 ≥ b3 and b3 ≥ c3
⇒ a3 ≥ c3
⇒ (ac) ∈ R
∴ R is transitive.
Hence, relation R is reflexive and transitive but not symmetric.

(v)  Let A = {−5, −6}.
Define a relation R on A as:
R = {(−5, −6), (−6, −5), (−5, −5)}
Relation R is not reflexive as (−6, −6) ∉ R.
Relation R is symmetric as (−5, −6) ∈ R and (−6, −5}∈R.
It is seen that (−5, −6), (−6, −5) ∈ R. Also, (−5, −5) ∈ R.
∴ The relation R is transitive.
Hence, relation R is symmetric and transitive but not reflexive.

Comments

Popular posts from this blog

Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y) : x and y have same number of pages} is an equivalence relation.

Class 12, NCERT Chapter 1,  Exercise 1.1, Q7 Set  A  is the set of all books in the library of a college. Given, R = { x ,  y ):  x  and  y  have the same number of pages} Now, R is reflexive since ( x ,  x ) ∈ R as  x  and  x  has the same number of pages. Let ( x ,  y ) ∈ R  ⇒  x  and  y  have the same number of pages. ⇒  y  and  x  have the same number of pages. ⇒ ( y ,  x ) ∈ R ∴R is symmetric. Now, let ( x ,  y ) ∈R and ( y ,  z ) ∈ R. ⇒  x  and  y  and have the same number of pages and  y  and  z  have the same number of pages. ⇒  x  and  z  have the same number of pages. ⇒ ( x ,  z ) ∈ R ∴R is transitive. Hence, R is an equivalence relation.

Let A be the set of all 50 students of Class X in a school. Let f : A → N be function defined by f(x) = roll number of the student x. Show that f is one-one but not onto.

Class 12, NCERT Chapter 1,  Example7 No two different students in the class can have the same roll number. Therefore, f must be one-one. We can assume without any loss of generality that roll numbers of students are from 1 to 50. This implies that 51,52,53... in N is not roll number of any student of the class, so that 51,52,53...  can not be an image of any element of X under f. Hence, f is not onto.

Let f : N → N be defined by f (n) ={ (n+1)/2, if n is odd and (n-1)/2, if n is even, for all n ∈ N.State whether the function f is bijective. Justify your answer

Class 12, NCERT Chapter 1,  Exercise 1.2, Q9 Thus it is bijective.