Skip to main content

Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a – b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.

Class 12, NCERT Chapter 1,  Exercise 1.1, Q8

A = {1, 2, 3, 4, 5}
R = { (a,b) ; |a – b| is even}
It is clear that for any element a ∈A, we have |a -a| = 0(which is even).
∴R is reflexive.
Let (ab) ∈ R.
⇒  |a –b| is even.
⇒  |- (a –b)| = |b - a| is also even.
⇒  (b, a) ∈ R is even.
∴R is symmetric.
Now, let (ab) ∈ R and (bc) ∈ R.
⇒ |a –b| is even and |(b –c)| is even.
⇒ (a – b) is even and (b –c ) is even.
⇒ (a –c ) = (a – b) + (b – c ) is even.    [ Sum of two even integers is even]
⇒ |a – c | is even.
⇒ (ac) ∈ R
∴R is transitive.
Hence, R is an equivalence relation.
Now, all elements of the set {1, 3, 5} are related to each other as all the elements of this subset are odd. Thus, the modulus of the difference between any two elements will be even.
Similarly, all elements of the set {2, 4} are related to each other as all the elements of this subset are even.
Also, no element of the subset {1, 3, 5} can be related to any element of {2, 4} as all elements of {1, 3, 5} are odd and all elements of {2, 4} are even. Thus, the modulus of the difference between the two elements (from each of these two subsets) will not be even.

Comments

Popular posts from this blog

Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y) : x and y have same number of pages} is an equivalence relation.

Class 12, NCERT Chapter 1,  Exercise 1.1, Q7 Set  A  is the set of all books in the library of a college. Given, R = { x ,  y ):  x  and  y  have the same number of pages} Now, R is reflexive since ( x ,  x ) ∈ R as  x  and  x  has the same number of pages. Let ( x ,  y ) ∈ R  ⇒  x  and  y  have the same number of pages. ⇒  y  and  x  have the same number of pages. ⇒ ( y ,  x ) ∈ R ∴R is symmetric. Now, let ( x ,  y ) ∈R and ( y ,  z ) ∈ R. ⇒  x  and  y  and have the same number of pages and  y  and  z  have the same number of pages. ⇒  x  and  z  have the same number of pages. ⇒ ( x ,  z ) ∈ R ∴R is transitive. Hence, R is an equivalence relation.

Let A be the set of all 50 students of Class X in a school. Let f : A → N be function defined by f(x) = roll number of the student x. Show that f is one-one but not onto.

Class 12, NCERT Chapter 1,  Example7 No two different students in the class can have the same roll number. Therefore, f must be one-one. We can assume without any loss of generality that roll numbers of students are from 1 to 50. This implies that 51,52,53... in N is not roll number of any student of the class, so that 51,52,53...  can not be an image of any element of X under f. Hence, f is not onto.

Let f : N → N be defined by f (n) ={ (n+1)/2, if n is odd and (n-1)/2, if n is even, for all n ∈ N.State whether the function f is bijective. Justify your answer

Class 12, NCERT Chapter 1,  Exercise 1.2, Q9 Thus it is bijective.